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Several rule induction methods have been introduced in order to
discover meaningfid knwledgefrom databaes, including medical
domain Ho ew, most ofthe qpproaches induce rudesfrom all the
data in databases and cnot in e iremently when new
samples are derived In thispaer, a new approxh to knowledge
acquisition, which indeprobabilistic rues incrementaly by using
rough set technique, is introduced and mms evaluated on two
clinical databases. 7he results show that this method inue the
same ndes as those inced by ordiny non-inremental learning
methods, which extract nres from all the dataseta, but that the
former method requires more compuational resowures than the
latter approach

INTRODUCIION

Several symbolic inductive learning methods, such as induction of
decision trees[1,5], and AQ 1nily[3], have been proposed to
discover meaningful knowledge from lge dat s. However,
most ofthe approaches induce rules from all the data in databse,
and cannot induce incrementally when new samples are derived.
So, we have to apply nrle induction metiods again tohedt ses
when such new samnples are given, which causes the computational
complexity to be expensive even ifthe complexity is O(n2).

Therefore, it is important to develop incremental leaming systms
in order to manage large datses[6,8]. However, most of the
previously introduced leaning systems have the following two
problems: first; those stems do not outrform oriary leaning
systems, such as AQ15[3], C4.5[5] and CN2[2]. Secondly, those
incremental leaming system s mainly induce detministic rules,
which are often overfitted to datasets. Thus, it is indispensable to
develop incremental leaning systems which induce probabilistc
rules to solve the above two problems.

Extending concepts of rule induction methods based on rough set
theory, we introduce a new approach to knowledge acquisition,
which induces probabilistic rles Mcrementally, called
PRIMEROSE-INC (Probabilistic Rule Induction Method based on
Rough Sets for Incremental Lening Methods).

Although the previously introduced rule induction method
PRIMEROSE[7M, which extrcts rules from all the data in databa
uses apparent accuracy to search for probabilistic nrles,
PRIMEROSE-INC first uses coverage to search for the candidates
ofrules, and secondly uses accuracy to select from the candidates.

This system was evaluated on two clinical datse: datses on
meningoencephalits and datbses on headache with respect to the
following four points: accuracy of classification, the nunber of
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generated rules, spatial computational complexity, and temporal
computational complexity. The results show that PRIMEROSE-INC
induces the same nrles as those induced by PRIMEROSE, but that
the former method requir more computational resources han the
latter approach.

PROBABILISTIC RULES

Rough Set Theory
Rough set theory claifies set-heoretic charcteristics of the classes
over combinatorial paerns of the attnbutes, which are precisely
discussed by Pawlak[4]. Thisthoy cma be used to acquire some sets
of attnbutes for classification and to evaluate how precisely the
attributes are able to classify data

Table 1: An Example ofDatabse

No. loc nat his nau class
Iwho _p__ per no m.c.h.

2 who per per no m.c.h.
3 at thr per no migraine
4 who thr per yes migraine
5 who per per no psycho
NOTATIONS: loc: location, nat nature, his: histoiy, nau: nausea,

who: whole, lat- lateral, per. persistent
tr. throbbing, m.ch.: muscle contaction headache,
migraine: classic migraine,
psycho: psychogenic headache.

Let us illustrate the main concepts ofrough sets which are needed for
our fonmulation. Table 1 is a small example of daabase which
collects the patients who complain ofheadache. Fit; let us consider
how an attnbute "loc" classify the headache patients' set ofthe table.
The set whose member satifies [loc=who] is {1,2,4,5}, which shows
that the attnibute "oc" of 1st; 2nd, 4th and 5th cases is equal to
"who"(In the following, the numbers in a set are used to represent
each record number). This set means iat we cannot classify
{1,2,4,5} fuirier solely by using the constaint R=[loc=who]. This
set is defined as the idiscenuble set over the relation R and
described as follows: [xlR = {1,2,4,5). In this pet, {1,2} suffer from
muscle contraction headache(j"m.ch."), {4} from classical
migraine('migraine!), and {5} from psychoC(psycho!). Hence we
need other addional attributes to &scriminate between "m.ch.",
"Migraine", and "psycho". Using this concept; we can evaluate the
classification power of each attribute. For example, "nat is
specific to the case of classic migraineC'migraine"). We can also
extend this indiscernible relation to multivariate cases, such as

[X]OOP961||||5,1 {1,2} and [x]1b,f,= {1,2,4,5}, where A and v
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denote "and" and "or' respectively. In ite fiamnework of rough set
theory, the set {1,2} is called stity kfiable by the former
conjuncion, and also called roughly dfiable by the lar
disjuncfive formula

In this way, the classificaton oftaining samples D is chartized
in the set-theoretic fiamework:Steps for classification are defined as
search methods for the best set [X1 which iS spported by the
relion R. Moreover, two imptnt st cal measues for
classificaon, accwracy and coverage (true positive rate) are defined
as:

aR(D) =I[x]R I DI/I[xIR I,KR (D) =I[x]R I Di/l Di
where A, (XR(D), and qR(D) denot the cardality ofa set A, an
accwacy ofR as to classification of D, and a coverage, or a true
positive rate of R to D, respectively. For exanple, when R and D
are set to [nau=yes] and [class=migraine], (lR(D) =1/1=1.0 and
qR(D) =1/2=0.50.

For fiarher infonnation on rough set theory, rrs could refer to
[4,9].

Definition ofProbabilistic Rules
The most simplest probabilistic rules are classificaion rules which
have high aCCurcy and high coverage.1 Such nrles can be defined
as:
R - d,R = A[ai = vj],aR(D) > 8a5KR(D) >8

where ddenote a class to which all the members ofD belong and
where 8a and 8K denote given thresholds for accurcy and
coverage, rsectively. For the above exanple shown in Table 1,
probabilistic rules for m.c.h. are given as follows:

[loc-who]&[nau=no] -+ m.ch. a--2/3=0.67, Ka=l.0,
[nat=per] -+ m.c.h. oa=2/3=0.67, K=I.0.

where 8a and 8K are set to 0.5 and 0.3, respectively. It is notable
dtat
this rule is a kind of probabilistic proposition with two statstical
measures, which is one kind of an extension of Ziardo's variable
precision model(VPRS)[9].2

PROBLEMS IN INCREMENTAL RULE INDUCTION

The most important problem in incremental leaming is tiat even in
an applied domain where the nrles are d , it does not
always induce the same rules as those induced by ordiy leamning

1In this model, we assumeiat accracy is dominnmt over coveage.
2 In VPRS model, the two precisions of =uracy is given, and the
probilistic prosition with aawmy and two prcion consves the
chamteristics ofthe ordinay proposition. Thus, our model is to inrioduce
the probabilistic proposition not only with accura, but also with coverage.

sYstems[8].3 Furthermore, since induced results are strongly
dependent on the former taining samples, the tendency ofoverfitting
is larger an the odinay lening systems.

The most imporant factor oftis tendency istat the revision ofrles
is based on the fornerly induced rules, which is the best way to
suppress the exhaustive use of computational esaour. However,
when induction of the same rules as ordinary leamning methods is
requied, more comnputational resoures will be needed, because all
the candidates ofrules should be considered

Thus, for each step, computational space for deletion of candidates
and addition ofcandidates is needed, which causes the computational
speed of incemental leaming to be slow. Moreover, in case when
probabilistic rles should be induced, the siuation becomes much
severer, since the candidates for probabilistic rules become much
lager an those for deterministic rules.

In our approach, we first focus on the performance of incrmental
learing methods, that is, we introduce a method which induces the
same rules as those derived by orday leaming methods. Then, we
estimate the effect ofthis induction on computational complexity.

AN ALGORITHM

In order to provide the same classificatory power to incremental
learning methods as ordinry leaming algorithms, we introduce
an inemental leining mehod PRIMEROSE-NC(Prbabilistic
Rule Induction Method based on Rough Sets for Incremental
Leaing Methods). PRIMEROSE-INC first measures the staistical
charcteitcs ofcoverage ofelementay attribute-value pairs. There
it measures the statcal c cistics of accuracy of the whole
pattem ofattnbute-value pairs observed in a dataset

In this algorithi, we use the following chaacteristic ofcoverage.

Proposition 1 (Monotonicity of Coverage)
Let Ri+j denote an attriute-value pair, which is a conjunction ofRf
and [a+lj=v,+j. Then,

Y.i ,I(D)<K()

Proof Since [X]Ril [x],Nholds,
KRJ{) = I[x];, rD I < I[xIi rMD|= KR{).

Furthermore, in rule induction methods, Ri+1 is selected to satisfy
a,.w1(D) TcRXD).Therefore, it is sufficient to check the behavior of
coverage ofelemtay attnbute-value pairs in order to esimate the
chactisfics of induced rles, while it is necessay to check the
behavior of accuracy of elementary attribute-value pairs and
accuracy ofpatns observed in the databases in order to estimate the
characteristics ofinduced rules.

Algorithm for Rule Induction. From these considerations, the

3 Hex, orinay learing systes deote methods tha induces all rles by
using all the samples.
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selecfion algorithm is defined as follows, where the following four
lists are used. Listl and List2 store elementay relatons which
decrease and increase its coverage, respectively, when a new
traiing sample is given. Lista is a list of probilstic rules which
satisfies the condition on the thesholds of accuracy and coverage.
Finally, Listr stores a list of probabilistic rles which do not satisfy
the above condition.

For nle induction, the following steps are applied to each class d,
the set ofwhich is equal to D.

(1) Revise a coverage and an accuracy ofeach elementay attriute
value pair [a,=vj by using a new additional sample Sk.
(2) For each pair rg=[a,=v7, Kl$j(D) decreases, then store it into
List1. Else, store it into LiWt2.
(3) For each member ry in Listl, search for a nile in Lista whose
condifion R includes ry and which fails to satisfies oR,(D) >&a and
KI(D) 4. Remove it from Lista, and Store it into Listr.
(4) For each member ry in List2, search for a rule in Listr, whose
condition R includes rg. If it satisfies aoA)D)4 and KRJD) 4,
then remove it fnro Liutr and store it into Lista. Otherwise, search
for a nule which satisfies the above conditon by using nile
induction methods.4
(5) For other rules in Listr, revise accuracy and coverage. If a ule
satisfies aR,p) 4-6a and Kcp(D) 4, then remove it from Listr and
store it into Lista.

For example, let us consider a case when the following new sample
is provided after all the probabilistic rules are induced flon Table 1:
5

|No. I oc nat his nau l classl
j6 l lat thr per no Im.ch.!
The inita condition of this systemn derived by Table I is
summarized into Table 2, and Lista and Listr for m.c.h. are given as
follows: Lista={[loc=who]&[nau=no],[natpe]},and
List'=={[Io-cwho],[loc-lat],[nat=tr],[hs= ],[nau=yes],

[nau=no] }.

Table 2: Accuracy and Coverage ofElementary Relations (m.c.h.)

D..IRelation Accuracy Coverage
[loc=who] 0.5 1.0
[lioc=at] 0.0 0.0
[nat=pe] 0.67 1.0
[nat4hr] 0.0 0.0
[his-e] 0.4 1.0
[nau=yes] 0.0 0.0

I[nau=nol 0.51 1.01
Then, the fir step revises acuracy and coverage for all the
elementay relations ([able 3). Since the coverages of (oc=lat],
[natthr], and [nau=yes] become larger hn 0.3, they are included in
LLst2. In the same way, [loc-who], [ r], and [nau=no] are
included in Listl.

Table 3: Revised Accuracy and Coverage ofElementazy Relations
(m.c.h.)

Relation Acuracy Coverage
R[locwho] 0.5 0.67
[loc=lat] 0.5 0.33
[nat=e] 0.67 0.67
[nat=thr] 0.33 0.33
[his-e] 0.5 1.0
[nau=yes] 0.5 0.33
[nau=no] 0.4 0.67

Nex the tiird step revises two measures for all the rules in Lista
whose condidonal parts include a member of Listj Then, the
fonnerly induced probabilistic les are revised into:

[loc=who]&[nau=no] -* m.c.h. a=0.67, K=0.67,
[nat=pe] -e m.c.h. a=0.67, r=0.67.

and not one ofthem is removed from Lista.

Then, the fo step revises two measures for all the rules in Listr
whose conditional parts include a member of List2. Then, the
following probabisc rule satisfies a>0.5 and K>0.3:

[loc-lat]&[nau=yes] -+ m.ch. ca=l.0, c=0.33,

and is stored into Lista. Finally, Lista and Listr for m.c.h. are
calculated as follows:
Listr{[loc-who]&[nau=no], [na=per]&[nau=n6],

[loclat]&[nau=yes]}, and
List,.{[loc=who], [loc-lat], [natper], [nat=tr], [s=pe],

[nau=yes], [nau=no] }.

EXPERIMENTAL RESULTS

PRMEROSE-INC was evaluated to the following two clMical
datases and compared with CN2[2], AQ15[3], C4.5[5], and
PRIMEROSE[7]. One is on differential diagnosis of headache,
which consists of 1477 samples, 10 classes, and 20 attnbutes. The
other one is on differenital diagnosis of meningitis, which consists of
198 samples, 3 classes, and 25 attrbutes.

4 hat is, it makes a conjunction ofattibute-value paiis and checkswhlh
this conjunction stisfies the condition on a probabilistic nle: aRi(D) .Sa
and KRi(D) .k*
S In this example, thresholds for accwuy and covenrge, Ba and 8k are
again setto 0.5 and 0.3, respectively.

The experiments were perforned by the following tiree steps.
Fr these samples are randomly splits into pseudo-traing samples
and pseudo-test samples. Second, by using the pseudo-traing
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samples, PRIMEROSE-INC and otier four systems induces rules
and the statcal measures.6 Third, the induced results are tested
by the pseudo-test samples. These prcedures are repeated for 100

times and average the estimators for accuracy ofdiagnosis over 100
ias.

Table 4: Experimentl Results: Accuracy and Number ofRules
(Headache)

Table 5: Experimental Results: Accuracy and Number ofRules
(Meningitis)

Table 4 and 5 give the comparison between PRIMEROSE-INC
and other rule induction methods with respect to the averaged
classification accuracy and the number of induced rules. These
results show that PRIMEROSE-INC atains the same perfonnance
of PRIMEROSE, which is the best perfoimance in those rule
induction ssems.

Table 6: Experimental Results: Spatial and Temporal Complexity
(Headache)

.-Method Code-Area Cul-CPU time
PRIMEROSE-INC 18241+219 4027±61
PRIMEROSE 1210±98 107403±219
C4.5 79198±193
CN2 118197±211
AQ15 I 120192±108
DEFINrMON. Cul-CPU time: Cunulative CPU Time

Table 7: Experimental Results: Spatial and Temporal Complexity
(Meningitis)

Metiod Code-Area Cul-CPU time
PRIMEROSE-INC 1241±34 1902±710
IPR1MEROSE 2210±141 16269±508

6 The t jds a and 8 wer set to 0.75 and 0.5, respectively in these
experiments.

Table 6 and 7 give the comparison between PRIMEROSE-INC and
other rule induction methods with respect to the code area,
and cumulative CPU time, which denotes how much time is totaUlly
needed to rerun the rule induction methods from scratch when a new
sample is added. These results show that PRIMEROSE-INC
oulprforms all the other non-incremental leaning methods,
although they need much larger memoly spae for runnig.
Fuirhenimore, the compaison of PRIMEROSEINC witi
PRIMEROSE suggest that the computational msources needed for
incremental learning are much larger than those for ordinary leaming
in order incremental learning methods induce all the same results
as the orinay leaming methods.

DISCUSSION AND RELATEDWORK

Applicabilit to Clinical Practice
As mentioned earlier, one of the impornt prtical limits of non-
incremental learning systems is tat these methods have to be re-
exeuted when a new additional sample is given, which cuses the
computational complexity to be expensive even ifthe complexity is
polynominal, as shown in Table 6 and 7. It is one ofthe reasons why
such classification systems have not been used for real-sized
applications, such as the analysis of aual computeized patient
records, because data acquisition of medical patient records is vety
dynamic.

On the other hand, one ofthe pracical limits of incremental leamning
systems is that they suffer from the problem on sampling order.
induced results will be different if the order of trning samples is
changed Thus, in order to apply incremental leamning methods to
practical siuation, we have to solve the problem on sampling order.
The introduced method PRIMEROSE-LNC solves this problem,
which suggests that the applicability of ourapph is much wider
than that ofother systems.

Proposition Logic and First Order Logic
The introduced method induces probabilistic propositions
incrementally fom da ses. Another possiblity ofrule induction is
to induce first order-relations from datasets, which have been studied
in research on logic progamming. This research area is called
inductive logic programming (ILP), based on the subsumption
technique[I0]. The advantages of LP over proposition rule
induction methods is tat ILP systems use domain knowledge clearly
and utilize induced knowledge as new domain knowledge. This
usage of induced knowledge can be viewed as incremental leaming.
However, unforunately, ILP systems views the incoiporation ofnew
domain knowledge as an intemediate step to induce important rules,
not as revision of mles. Thus, rule induction systems using ILP are
classified into non-incrental leaming methods and they suffer
from the same problems as non-incremental mle induction methods
mentioned earlier.
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Method Accuay Number ofRules
PR1MEROSE-INC 89.5±5.4% 67.3±3.0
PRIMEROSE 89.5±5.4% 67.3±3.0
C4.5 85.8±2.4% 16.3±2.1
CN2 87.0±3.90/% 192±1.7
AQ15 86.2±2.6% 312±2.1

Mediod Accuracy Niunber ofRules
PRIMEROSE-INC 81.5±320/o 52.3±1A
PRIMEROSE 81.5±3.20/o 52.3±1.4
C4.5 74.0±2.1% 11.9+3.7
CN2 75.0±3.90/o 33.1±4.1
AQ15 80.7±2.70/o 32.5±2.3

C4.5 11862±707
CN2 - 11117±504
IAQ15 I -1 121



Decision Matrix
Shan and Ziatko introduce decision matrix method, which is based
on an indisemible matrix, in order to make incremental leaning
methods efficientl6].

Their approach is simple, but veiy powerfil. For the above
examnple shown in Table 1, the decision matrix for m.ch. is given
as Table 8, where the rows denote positive examples ofm.c.h.,
the columns denote negative examples of m.ch., and each matrix
element a# shows the differences in attibute-value pairs between
iti sample andjth sample. Also, + denotes that all the attribute-value
pairs in two samples are the same.

Table 8: Decision Matrix for m.c.h.

U 3 4 5
I' I(l=w), (n=p) j(n=p), (na=n) i+
2 I(l=w), (n=p) I(n=p), (na=n) i
NOrATIONS: I=w: loc=who, n=p: nat=per, na=n: nau=no

Shan and Ziatko discuss induction of detetministic rules in their
original paper, but it is easy to extend it into probabilistic domain. In
Table 8, the appeaance of + shows that decision rules for m.ch.
should be probilistic. Since the first and the second row have the
same pater, { 1,2,5) have the same pattem of attbute-value pairs,
whose accuracy is equal to 2/3=0.67. Furthermore, rules are
obtained as:
[loc=who]v[nat=per])A([nat=per]v[nau=no]) -) m.c.h.,
which are exactly the same as shown in Section 3.

When a new example is given, it will be added to a row when it is a
posifive example, and a column when a negative example. Then,
again, new matrix elements will be calatd For the above
example, thenew decision matrix will be obtained as in Table 9.

Table 9: Decision Matrix with Additional Sample

U 3 4 5
1 (l=w), (n=p) (n=p), (na=n)
2 (l=w), (n=p) (n=p), (na=n)
6 (na=y) (=1) (1=1), (n=t),

NorATIONS: l=w/l: loc=who/at, n=p': nater/tr,
n,=y/n: nau=yes/no

Then, from the last row, the thi rule: [loc-lat]A[nauyes]
-+m.ch. is obtined.

The main difference between our method and decision matrix is
that the latter approach is based on apparent accuracy, raer tha
coverage. While the same results are obtained in the above simple
example, the fonrer p is sensitive to the change ofcoverage
and the latter is to the change ofaccuracy. Thus, ifwe needrules of
high accuracy, decision matrix technique is vety powerfuL
However, a rule of high accuracy may support only a small case,
which suggests that this rule is overfitted to the training samples and

coverage should be dominant over accuracy in order to suppress the
tendency of overfitting. However, oniginal decision matrix technique
does not incorporate such calculation of coverage. Thus, it needs to
include such calculation mechaism when we extend it into the
usage ofboth sical measures.

CONCLUSION

In this paper, a new apprach to incremental induction of
p abilistic rules, called PRIMEROSEINC, is introduced, which is
based on the extension of variable precision rough set model. This
system was evaluated on two clinical datases. The experimental
results show tht the introduced system induces the samne rules as
those induced by PRIMEROSE, but tha the fonner method rqires
much computational resoures an the latter approach.
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